182-1095-8705
最新公告:NOTICE
8月1日起,国家知识产权局停征和调整部分专利收费,详情参阅资讯中心公告

资讯中心

当前位置:专利申请 > 资讯中心 >

技术成果的专利权归谁,放弃专利权以什么为准

专利代理 发布时间:2024-03-06 15:42:14 浏览:



今天,乐知网律师 给大家分享: 技术成果的专利权归谁 ,放弃专利权以什么为准 。



技术成果的专利权归谁


合作开发完成的发明创造,除当事人另有约定的除外,申请专利的权利属于合作开发的当事人共有。

根据具体情况,在实践中,要注意以下几个问题:

1、一方转让其共有的专利申请权时,其他各方可以优先受让其共有的专利申请权。

该优先权的基础在于各方依合同的约定投入了资金并具体完成了研究开发任务。

优先权的含义是在同等条件下,合作合同当事人比其他人有优先受让的权利。

2、当事人一方声明放弃其共有的专利申请权,可以由另一方单独申请或者由其他各方共同申请。

专利申请权是财产性权利,因此可以放弃。

基于共同共有关系,其他共有人取得了全部专利申请权。

3、申请人取得专利的,放弃专利申请权的一方可以免费实施该专利。

但其不能转让或者许可他人实施,这种免费实施的权利并不意味着放弃该专利申请权的一方还是共有专利权人。

4、当事人一方不同意申请专利的,另一方或者其他各方不得申请专利。

5、实践中,合作开发合同当事人也可约定技术成果的归属,有以下几种:

(1)约定研究成果的专利申请权为一方所有,但享有专利申请权的一方对另一方作出适当补偿。

(2)约定向合同外第三方转让研究成果时,应经合作开发合同当事人协商一致,由此获得的利益由各方共享。

(3)在某种情况下,当事人各方还可以在合同中约定对技术成果的分享份额以及各自享有的专利申请权。

(4)约定由当事人一方享有对合作开发成果的独占使用权或转让权,但取得这一权利的当事人对其他各方当事人支付约定的价金。

《专利法》第四十二条发明专利权的期限为二十年,实用新型专利权和外观设计专利权的期限为十年,十五年,均自申请日起计算。


放弃专利权以什么为准


放弃专利权声明。

放弃专利权声明经审查,不符合规定的,审查员应当发出视为未提出通知书;符合规定的,审查员应当发出手续合格通知书,并将有关事项分别在专利登记簿和专利公报上登记和公告。

放弃专利权的生效日为手续合格通知书的发文日。

《专利法实施细则》第十三条第一款的放弃专利权声明,应当声明自申请日起放弃专利权。

专利局收到放弃专利权声明后,由相应流程管理部门予以登记和公告,放弃专利权的生效日为所放弃专利的申请日。

在有下列情况之一时,专利权在期限届满前提前终止。

(一)、没有按照规定缴纳年费的; (二)、专利权人以书面声明放弃其专利权的。

专利权的终止,由专利局登记和公告。


数据库理论应用于专利挖掘项目讲解


专利挖掘工作是企业进行专利布局及实施专利管理工作的基础,为此,如何在专利挖掘中使用有效的挖掘方法,是助力企业专利挖掘工作的一个利器。

专利挖掘工作中,如何确定待挖掘的数据源是一个关键的部分,即从何种对象入手实施专利挖掘是达成专利挖掘的项目目标的一个关键,通常情况下,企业会考虑主要基于如下几类数据源来规划挖掘工作。

1、基于企业产品来挖掘某一技术领域的专利; 2、基于某一类技术现有的专利来挖掘外围专利; 3、基于单一竞争对手的专利来有针对性的实施专利挖掘; 4、针对一类产品挖掘其在某一技术领域的标准专利。

此处需要注意到的是,在上述挖掘工作中,都同时面临如何管理好待挖掘的数据源的问题,是否可以找到一种可靠的数据管理模型来提供高效的数据管理方式。

在此,我们先引入一个在计算机的数据挖掘领域广泛使用的概念“数据存储库”(例如数据仓库),数据挖掘可以应用于任何类型的数据存储库,一般情况下,数据存储库可以包括如下几种类型:数据仓库、关系数据库、事物数据库、万维网、一般文件和数据流等,而本文将重点关注数据仓库。

所谓数据仓库,是一种具有收集并组织多维度数据的信息存储库,基于这种特性,考虑将其作为本文将要讨论的一种应用于专利挖掘工作中的数据管理模型。

假设A企业是一个成功的跨国公司,我们当前的任务是挖掘该公司每种产品在人工智能领域的专利,A公司产品部门分布全球,涉及的产品线多达几十个,且每个产品线在人工智能领域都有完善的自主开发的技术集,目前该企业计划布局每个产品在人工智能领域的专利。

分析可知,A公司产品线多,从数据管理的角度来看,每个产品在人工智能领域开发的技术方案相对分散,散布在多个开发部门的开发组中实现,因此,在专利挖掘过程中,将考虑如何高效的无遗漏的挖掘并管理来自不同开发组开发的专利方案。

一种数据仓库构造和使用的典型系统框架,经过研究,可以考虑将图1所示的数据仓库的结构模型应用在该专利挖掘项目中,以实现高效、高质量的完成专利挖掘目标。

数据仓库的核心是多维数据库结构建模,该模型实现了一种典型的物理结构,即多维数据立方体(multidimensional data cube),数据立方体可以提供数据的多维视图,每个维对应于模式中的一个或一组属性,好处是可以快速查询到汇总数据。

针对A公司的专利挖掘项目,在待挖掘的数据源是各个产品中人工智能领域的技术内容的情况下,可以利用上述多维数据立方体构建一种可靠的数据管理模型。

如图2所示,在此项目中,多维数据立方体中的三个维度可以定义为:产品(电视、音响、电饭煲、冰箱等)、人工智能技术(图像识别、语义分析、信息检索、深度学习)和产品的应用场景(物联网、智能家居、导航、客服等),即本次项目的挖掘工作可以采用上述模型所限定的三个维度元素进行组合遍历,该多维数据立方体中的每个单元存储挖掘到的专利的技术方案。

例如图2中所示出的,在物联网场景下同图像识别相关的家用电视的专利技术方案内容为S4,存放在单元中,而其他立方体单元中可以存放遍历其他几个维度组合上挖掘到的技术方案。

下面就基于上述数据管理模型,简述A公司产品在人工智能领域的专利挖掘过程和挖掘结果。

1.1 产品维度 分析A公司的产品系列,可以综合考虑产品的重要度、成熟度等几个方向综合确定产品的专利挖掘方向和重点。

在产品重要度的分类中,可以考虑将产品按照重点产品和非重点产品划分,分别估算重点产品和非重点产品能产出的专利量。

需要说明的是重点产品具有如下一个或多个属性:市场占有率和增长率高、技术含量高、销售利润高等。

在产品成熟度的分类中,可以考虑将产品按照市场应用和技术实现的成熟性进行划分,重点估算成熟度高的产品的专利量。

需要说明的是高成熟度的产品包括如下一个或多个属性:涉及前沿的实现完善的成熟技术、用户反馈良好的方向等。

另外关于新产品,需要根据情况部署关键技术的专利。

1.2 人工智能技术维度 针对人工智能技术所涉及的如图3所示的多个分支技术,结合已经确定的产品挖掘方向,实现在深度、广度两个维度上分别进行纵向布局和横向布局。

人工智能技术的分支技术的分类如下图3所示:

关于纵向布局的挖掘结构中,主要是实现基于每一类分支技术开展纵向布局,可以围绕某一类或某一个分支技术在延续、纵向这个维度上进行的改进和迭代,形成纵向布局结构。

上述采用延续、纵向的布局方式,主要基于技术是不断更新发展的特性来确定,随着技术的不断发展,必然产生迭代的技术改进点,因此,纵向布局结构主要跟随的是技术的更迭而产生。

关于横向布局的挖掘结构中,主要是实现基于不同类型技术的关联因素开展的横向布局,既可以围绕不同技术之间的关联关系,形成横向布局结构。

采用不同技术之间的关系支持的布局方式,主要基于各类技术都处于相关技术群中,任何一项技术都不是孤立的发展,随着相关技术群以及技术群与技术群之间的关联日益密切,必然产生关联技术之间的创新点,因此,横向结构布局主要是基于相关技术之间的关系因素为支撑点。

1.3 应用场景维度 基于本文所讨论的专利挖掘方法,将最后一个挖掘维度—应用场景与上述两个维度的挖掘方向进行结合,最终实现多维数据立方体在专利挖掘项目中的有效应用。

基于本文讨论的多类产品和人工智能技术,当前可以涉及到的应用场景的类型大致如下:

结合1.2中完成的技术布局结构,实现在网状结构上进行网状式布局。

技术总是从已知领域渗透至未知领域,并且随着产品种类的增长,技术及技术之间更迭也是迭代发展,导致了技术在不同领域应用时会产生意想不到的新用途,从而可以蔓延出覆盖型的网状布局结构,这种网状布局结构可以理解为产品的实现技术应用在各个应用场景下所形成的枝蔓结构。

由此可知,基于1.1、1.2和1.3,我们可以完成A公司产品中关于人工智能专利的自主布局和挖掘工作,进一步的,在产品后续的更新迭代过程中,仍旧可以采用上述挖掘方式,作为继续专利进行申请。

此处需要说明的是,在A企业部署外围专利、规避性专利和标准专利的过程中,同样可以考虑使用本文涉及到的数据管理模型,来开展和规划专利挖掘工作。


更多关于 技术成果的专利权归谁 ,放弃专利权以什么为准 的资讯,可咨询 乐知网。

(乐知网- 领先的一站式知识产权服务平台,聚焦 专利申请,商标注册 业务)。


关键词: 申请专利 专利代理